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Simulating the Dynamic Trends of Fisheries Regulated by
Small Daily Bag Limits

CLAY E. PORCH AND WILLIAM W. Fox, JR.*
Cooperative Institute for Marine and Atmospheric Studies

Rosenstiel School of Marine and Atmospheric Science. University of Miami
4600 Rickenbacker Causeway. Miami, Florida 33149. USA

Abstract. — We developed an algorithm for simulating the effects of potential bag limits. The
algorithm uses statistical distributions to model the frequency distribution of catch per trip. The
moment equations of the distribution are keyed to stock abundance and the coefficient of fishing
mortality rate, which allow the model to reflect the dynamics of the fishery. The catch with the
bag limit is calculated by censoring the simulated distribution. We establish the conditions under
which compounded Poisson distributions, such as the negative binomial, can be expected to
provide adequate models for the catch distributions of recreational fisheries. We also discuss the
assumptions that underlie the method of censoring catch-per-trip distributions, and, where appro-
priate, suggest alternative models. An example is developed in which we use the negative binomial
distribution to model catch per trip and the familiar exponential model to simulate the change in
stock abundance due to fishing mortality.

A bag limit is a type of allocated catch quota
that restricts the number of animals a fisher, or
group of fishers, can keep per unit time. Hence, a
bag limit reduces the catch made by the more
skilled, or lucky, fishers. The usual purposes of
bag limits are to reduce fishing mortality and to
allocate the resource more equitably. Daily bag
limits have proven especially popular among
managers of recreational fisheries, because the
limits can be used to prolong the open season un-
der a catch quota and because the choice of the
most appropriate size for the bag limit does not
(necessarily) require estimates of the total catch
or total effort.

Prudent implementation of a bag limit program
requires answers to two basic questions: (1) What
size bag limit will most likely achieve the pre-
scribed immediate (short-term) reduction in fish-
ing mortality? and (2) How should the bag limit
be adjusted over the long term to accommodate
changes in stock abundance or fishing practices of
the fishers? Previous studies, for example, El-
dridge and Powers (1983) and Bannerol (1987),
addressed the first question with the traditional
censoring procedure in which catches that arc ob-
served to exceed the bag limit are counted as equal
to the bag limit. Both studies pointed out some of
the inherent limitations of the traditional ap-
proach, but with the exception of an adjustment

' Present address: National Marine Fisheries Service,
1335 East-West Highway, Silver Spring, Maryland
20910, USA.

for release mortality by Bannerol (1987), did not
propose alternalive methods. Argue et al. (1983)
examined ihe second queslion to some extent, but
did not allow for changes in fishing success with
changing stock abundance. Ideally, one would like
to know how both fishing success and stock abun-
dance will change when a given bag limit, or se-
quence of several bag limits, is implemented over
an extended period of time. Insight into this prob-
lem would be especially helpful to managers who
wish to implement a regulatory program over sev-
eral years.

We present an algorithm for simulating the ef-
fects of potential bag limits on a fishery. The al-
gorithm links models for the frequency distribu-
tion of catch per trip, the effect of a bag limit on
catch per trip, and the effect of fishing on stock
abundance. We discuss these models in detail and
develop an example with the negative binomial
distribution and a simple exponential model of
stock abundance.

Modeling the Frequency Distribution of
Catch Per Trip

Greenwood and Yule (1920) showed that the
frequency of multiple accidents sustained by in-
dividuals working in a factory can be modeled by
some form of compound Poisson distribution.
Thompson (1976) and others have since suggested
thai Ihe same may be true for frequency distri-
bulions of catch per fishing trip. In this section we
show thai, under certain conditions, compound
Poisson models are indeed appropriate for catch
distributions. Our derivation partially follows the
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BAG LIMITS AND FISHERIES 837

approach of Greenwood and Yule (1920), but our
assumptions are sufficiently different to warrant
some discussion here. Other models, specifically
for hook-and-line angling, have been derived by
Deriso and Parma (1987).

The observed frequency distribution of catch
per trip is a composite of the catches of S total
trips; a trip may be defined either in terms of a
single fisher (fisher-trip) or in terms of a group of
fishers (party-trip or vessel-trip). We modeled
fisher-trips as a series of n fishing instants; a fish-
ing instant is defined as a unit of time sufficient
in duration to catch a single fish. The probability
(p) of catching a fish during the /th instant of the
yth fisher-trip, ptr is considered constant through-
out the duration of that instant, but the ptj values
can vary among instants and fisher-trips.

Under these assumptions, the fishing process
may be addressed as a series of n independent
Bernoulli trials, each with a unique probability ptj
for success:

(Plj + Q\j)(P2j + <72,)- - '(Pnj + Qnj) = \\ 0)

q,i = I - p,j. The probability of catching x fish
over the course of the yth fisher-trip is given by
the summation of like terms in the expansion of
equation (1), commonly referred to as the gener-
alized binomial distribution. Total catch (O is
distributed as the amalgam of the 5 separate gen-
eralized binomial distributions. The expectation

Strictly speaking, equation (1) applies only to
singular- capture fisheries in which the chance of
landing more than one fish simultaneously is re-
mote (e.g., angling or spearfishing). However, be-
cause this condition typifies most recreational
fisheries, the model should find broad application.
Multiple-capture fisheries (e.g., trawling) will
probably require a different model (see, for ex-
ample, Pella and Psaropulos 1975 or Mangel and
Beder 1985).

Recording the instant-by-instant fishing success
for every fisher-trip is at best impractical. There-
fore, one must take several simplifying assump-
tions regarding the pu values:
( 1 ) ptl is small for all / (instants) and j (fisher-

trips), i.e., the probability of catching a fish
during any given instant on any given fisher-
trip is small;

(2) the number of instants (maximum possible
catch) in they'th trip, nr is large; and

(3) the expected catch for the jih trip, X, = 2, pir
varies among the S total fisher-trips as a ran-

dom variable (i.e., X, is a real-valued function
defined on a probability space).

When assumptions (1) and (2) are satisfied, the
generalized binomial distribution tends to the
Poisson distribution (Patil and Joshi 1968):

,*L
A'!

(2)

P[x | \j] denotes the probability of catching ex-
actly x fish on the jih fisher-trip. Notice that we
do not need to assume that the probability of
catching a fish is constant over all instants, only
that it is small. Of course, in practice, thep,, values
will not always be small, so assumption (1) is not
exactly satisfied. Nevertheless, if the maximum
possible catch (n}) is large, but the expected catch
(X,) is moderate, the Poisson approximation will
be fairly robust (Feller 1968).

Assumption (3) (that X, is a random variable)
permits the single-fisher Poisson model to be gen-
eralized over all fisher-trips by allowing \j a prob-
ability distribution of its own— f[\,]. Such gen-
eralizations are commonly termed "compound
Poisson*' distributions, and are obtained by inte-
grating the product of /1XJ and equation (2) over
the range of Xy values. Compounding the Poisson
density with the flexible gamma distribution, for
example, results in the familiar negative binomial
distribution (Greenwood and Yule 1920):

(3)
P[x] is the probability of catching x fish on an
average fisher-trip; m is the overall expected catch
per trip (m = 2 X/51), and K is a measure of het-
erogeneity about the mean (K = m 2/[a2 - m ]; <r2

is the variance in catch among trips).
So far we have dealt only with the theoretical

catch-per-fisher-trip (c/f) distribution. However,
if the catches of fishers within parties are inde-
pendent, then the Poisson model also applies to
the probability of catching a total of x fish on the
jlh party-trip. Realistically, the catches of fishers
in a given party will seldom be completely inde-
pendent, but unless the technologies being used
differ greatly within parties, violations of inde-
pendence would not seem to be of much conse-
quence. The mathematical problem becomes much
more difficult without the assumption of quasi-
independence; it involves conditional probabili-
ties, which can lead to complicated integrals with-
out known solutions (Porch 1988).
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838 PORCH AND FOX

Generalizing the single-party Poisson model
over all party-trips is, in principle, the same as
generalizing the single-fisher Poisson model over
all fisher-trips, except that the compounding func-
tion /[A,] would include variations in the number
of fishers per party. It is also possible to generalize
over subgroupings of party-trips, distinguished,
perhaps, by the number of fishers per party or by
some qualitative trait (e.g., charter versus private).

In summary, we have confirmed, from a theo-
retical standpoint, that the catch distributions of
most recreational fisheries ought to follow closely
some form of compound Poisson distribution. The
negative binomial distribution seems promising
when the distribution of expected catches among
fishers or parties has a unimodal or decaying ex-
ponential-type pattern such that the gamma dis-
tribution would provide a reasonable fit. Empir-
ical evidence supporting the negative binomial
distribution as a model for c/f distributions has
been reported by Bannerol and Austin (1983) and
Small and Downham (1985). Examples of suc-
cessful fits of the negative binomial distribution
to catch-per-vessel-day distributions for spotted
seatrout Cynoscion nebulosus in Florida Bay and
king mackerel Scomberomorus cavalla off eastern
Florida are shown in Figure 1.

Note that simple compounding functions, such
as the two-parameter gamma, may not be suffi-
ciently flexible to include the effects of spatial or
temporal changes in the abundance or catchability
of the stock. Hence, even if the Poisson model is
entirely appropriate for individual trips, its gen-
eralization may not provide a good fit to data col-
lected across a broad area or a long time span.
Mathematically, this is essentially the same prob-
lem as that in ecological "clump" models in which
the compounding function changes shape due to
animal movements (Pielou 1977). Therefore, those
wishing to test any model of catch per trip should
keep in mind that it applies only to subsets of the
data in which the conditions affecting /[A, ] were
relatively homogenous. As we will show in the
next section, the dynamic character of the catch-
per-trip distribution is a critical part of any anal-
ysis of bag limits so that models for data aggre-
gated over long lime spans are not particularly
useful in any case.

Modeling the Effect of a Bag Limit on Catch
The toial caich wilh a poleniial bag limit, hC (b

denotes the size of ihe bag limil), is often esti-
maled by censoring observed calch-per-fisher-irip
distributions al the bag limit, thai is, daily calches

500

o
IJJ

O
LU
OC

250-

2 4 6 8

CATCH PER VESSEL-DAY

1 0

O

O
UJ
OC

400-

300-

200-

100-

2 4 6 8

CATCH PER VESSEL-DAY

1 0

FIGURE I.—Negalive binomial fils to catch-pcr-ves-
sel-day distributions for (a) recreational catch of spotted
seatrout in Florida Bay during summer 1980 and (b)
charter boat caich of king mackerel off easl Florida dur-
ing 1982.

larger than the bag limit are counted as equal to
the bag limit:

*C = S\ 2
\x-.

xP[x] + b (4)

P[x] is the proportion of the S total fisher-trips
thai caughl x fish. This approach is reasonable,
provided ihese assumptions are met:
(4) the shape of the underlying c/f distribution

does not vary (but see below);
(5) when regulated by a bag limit, individual fish-

ers cease fishing as soon as the bag limit is
reached, but do not otherwise alter their be-
havior;

(6) The bag-limit-regulaled fishery is nol affected
by other interesls operaling on the fishery; and

(7) the fishery targets and catches a single species.
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BAG LIMITS AND FISHERIES 839

o 3

0

CD
< 2
UJ

g 1
0.0

0 1 2 3 4 5
0 1 2 3 4 5

TIME
FIGURE 2.—Temporal divergence between stock abundance with the bag limit CW) and stock abundance without

the bag limit (HTV), with corresponding divergence between the shapes of the censored catch-per-trip distributions.
The vertical and horizontal axes of the major graph are relative abundance (the abundance at time / divided by
the initial stock abundance, ty/jVo) and time in arbitrary units (for example, 1 year). The vertical axes of the inset
graphs are relative frequency (probability) and the horizontal axes are catch per trip. The specific pattern shown
was generated by assuming that the rate of change in stock abundance is linearly related to the current stock
abundance: dNtldt = (G - F)N,\ F (=1.0) is the instantaneous fishing mortality rate coefficient and G (=0.75) is
the intrinsic growth rate coefficient. The bag limit (4 fish/d) was assumed to reduce the fishing mortality rate to
roughly one-half of this magnitude without the bag limit. Catch per trip was assumed to be Poisson distributed
with parameter X (the overall mean catch per trip).

The individual assumptions can be relaxed to
varying degrees, yielding a less unwieldy set of
restrictions (see the discussion section). Assump-
tion (4), however, is particularly difficult because
it implies that catch per unit effort is independent
of slock abundance. In reality, if the bag limit is
successful in reducing fishing mortality, and all
other things (initial stock abundance, fisher skill
and effort, fish behavior, etc.) are equal, the mean
stock abundance with the bag limit will be larger
than it would have been without the bag limit.
Hence, if catch per unit effort is density-depen-
dent, the shape of the c/f distribution, P[x], must
differ between the two cases (Figure 2).

Strictly speaking then, equation (4) is exact only
in the instantaneous sense:

d»C, xP[x |/] + b I']

(5)

P[x | / ] and 5, are the time-dependent parameters
of the c/f distribution and cPC, is the catch landed
during the infinitesimal time interval [/, / + dt],
Thus, in order to compute the catch with the bag

limit that accumulates during a finite interval, it
is necessary to integrate equation (5):

(6)
Of course, to evaluate this integral one must define
the c/f distribution (P[x \ t] and 5,) as a function
of stock abundance (or other variables), and stock
abundance as a function of time.

The c/f Distribution as a Function of
Stock Abundance

Any model of the c/f distribution can be ex-
pressed in terms of its moments (mean, variance,
etc.) and the total number of trips (5). According-
ly, the task of ascribing a dynamic character to
the c/f distribution reduces to that of choosing the
appropriate functional forms for its moments and
forS.

The mean catch per trip during a given time
period is simply the total catch divided by the
total number of trips, C/S, and so can easily be
obtained from any appropriate simulation rou-
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840 PORCH AND FOX

line. Most simulation models, however, do not
define the variance and higher-order moments ex-
plicitly. In such cases, the only alternative is to
express those moments as functions of variables
that are defined by the model (e.g., Q.

Taylor (1961) and Taylor et al. (1978) presented
considerable empirical evidence, and some con-
ceptual justification, for a simple power law re-
lating spatial variance (a2) to mean population
density (M):

a2 = an*. (7)

Several authors have suggested that a similar law
might apply to the relationship between the fishing
mortality rate and stock abundance (Fox 1974;
MacCall 1976; Peterman and Steer 1981). If this
is true, Taylor's empirical law should also hold for
the means and variances of catch per trip. Small
and Downham (1985) reported that the means
and variances of the daily catches of brown trout
Salmo trutta and Atlantic salmon Salmo salar in
British waters do in fact follow Taylor's law. Catch-
per-vessel-trip data from the two fisheries we have
examined, spotted seatrout in Florida Bay and king
mackerel in the southeastern USA, also support
this hypothesis (Figure 3).

Higher-order moments will be needed if the c/f
distribution has more than three parameters (in-
cluding 5"), but we suspect that similar empirical
laws could be established for these as well.

The total number of trips (S) can vary in time
for several reasons: inclement weather, changes in
slock abundance, timing of alternate activities, or
even as a response to the bag limit. Because this
issue is rather involved, we defer all related dis-
course to the discussion section. The subscript no-
tation, however, is retained to preserve the gen-
erality of subsequent developmenis.

Change in Stock Abundance with the Bag Limit
Any continuous, time-dependenl model of stock

abundance can be reduced to the simple form

dN< d€< (8)

G, is the difference between the intrinsic growth
and death rates (per unit time) for the stock and
dCt/dt is the instantaneous catch rate (per unil
lime), neilher of which is necessarily constant or
independent of stock abundance TV,. As discussed
previously, the instantaneous catch with the bag
limit, d^C,* can be written as a function of the
probability of catching x fish given a certain level
of abundance, P[x \ N,]. In particular, if assump-

C? 3

2

a.

-0.5 0.5 1.5

CO
O

ot
-0.5 0.5 1.5

logeX.
FIGURE 3. —Regressions of logger2) against logr(X) from

(a) quarterly summaries of the daily recreational land-
ings of spotted seatrout in Florida Bay for the years
1980-1984 (a2 = 9.14A108; r = 0.93) and (b) annual
summaries of the daily charter boat landings of king
mackerel in east Florida and the Gulf of Mexico for the
years 1982-1985 (<r2 = 13.51A101; r= 0.92).

lions (5), (6), and (7) hold, we may write equation
(8) as

(9)

In practice, exacl solutions lo equalions (8) or
(9) will nol be possible unless P[x ] is an unreal-
istically simple funclion of N,. Hence, one musl
turn lo some numerical recipe for an approximate
solulion. The algorithm below is one such recipe.

Numerical Algorithm
The solution to equation (8) for the time inter-

val [0, T] can be written
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BAG LIMITS AND FISHERIES 841

NT
i,-*F,)di (10)

The coefficient ''F,, which represents the instan-
taneous fishing mortality rate with the bag limit
(per unit time), is defined as

but can also be written as a fraction of the fishing
mortality rate without the bag limit by substitut-
ing in the identity d"Ct = WF,N, dt (w = without
the bag limit):

l d»c, "
These equations suggest the approximating recur-
sion

in which

Nke((
(11)

(12)

The parameter hk is the duration of the /cth time
step in terms of the units used to define the rate
coefficients (Gk and hFk); for example, if Gk and
hFk were expressed as annual rates, then hk would
be written as some fraction of a year. The rate
coefficients Gk and hFk are held constant through-
out the duration of the /cth time step, but are al-
lowed to vary from step to step as functions of the
conditions at the start of the klh step. The terms
hCk and wCk are the catches made with and without
the bag limit during the /cth step, given an initial
abundance Nk (more on this later). The recursion
allows us to compute equation (10) numerically
by piecing together a series of exponential ap-
proximations. Thus, for the time interval [0, 7'],
divided into r number of steps, the approximating
formula is

NT « Nle^(°k ^ (13)
in which JV, = yv/e0.

It can be shown by elementary calculus that, as
long as Gk and hFk are strictly functions of the
conditions at the start of each step, the limit as hk
- 0 (r - oo) of equation (13) is equation (10)—
the true solution. Moreover, the accuracy of equa-
tion (13) increases monotonically with r (see Fig-
ure 4). Certainly, a number of other standard for-
mulas (Simpson's rule, finite difference, etc.) can

|

500

480

460

440

0.0 0.5 1.0

TIME (years)

FIGURE 4. —Increasing accuracy of the piecewise ex-
ponential approximation routine with decreasing step
size (h) for a 1 -year simulation. The top curve represents
the true solution. The remaining curves, in descending
order, represent the solutions when the year is divided
into eight, four, two, and one time steps, respectively.
(The models used to generate this figure are those dis-
cussed in the example section.)

be used to approximate the solution to equation
(8), but the recursion described by equation ( 1 1 )
is probably the most familiar to fisheries scientists
and has the advantage of providing exact solutions
when Gk and hFk are known constants.

In the last two paragraphs, we introduced the
general numerical scheme, but did not completely
specify the proper choice of hFk. Equation (12)
defines hFk in terms of three variables: the fishing
mortality rate without the bag limit ("/•*), the catch
without the bag limit (*G)« and the catch with the
bag limit (hCk). The variable *'Fk (and Gk) is an
investigator-supplied function of the conditions
(stock abundance) at the beginning of the A:th lime
step. The catch without the bag limit can be ap-
proximated by the familiar catch equation

(1 - e(C" "™'). (14)
* <"/V - Gk)

which is derived from equation ( 1 1 ) and, there-
fore, is exact when *'Fk and Gk are constants. The
catch with the bag limit can be obtained by dis-
torting the c/f distribution. If the bag limit censors
the c/f distribution (equation 5), then

* SJ
\x

b 2 P[x \ N k ] \ \
x*b /

(15)

D
ow

nl
oa

de
d 

by
 [

N
O

A
A

 N
M

FS
 L

a 
Jo

lla
] 

at
 0

8:
02

 1
4 

Ja
nu

ar
y 

20
16

 



842 PORCH AND FOX

Sk is the number of trips made during the A*th time
step. The P[x \ Nk ] values are the probabilities of
catching x fish without the bag limit; thus, they
must be expressed as functions of the moments
without the bag limit. The mean catch per trip
without the bag limit, for example, is obtained
from the catch equation

When the moments of P[x \ Nk], such as the
mean (above), are expressed as functions of H'C\,
the limit as hk -» 0 of equation (15) is equation
(5). On an intuitive level, the combination of
equations (14) and (15) can be thought of as re-
flecting the c/f distributions for the lower limb of
Figure 2. The less one strays from the starting
point (the smaller the step size) where the stock
abundance with the bag limit is the same as the
stock abundance without the bag limit (Nk), the
closer will be the two respective c/f distributions
and, thus, the accuracy of the approximation.

The Bag Limit Algorithm Applied to a
Simple Example

In the preceding section, we presented a general
algorithm for simulating the effect of a bag limit
on catch and stock abundance. In this section, we
examine the special case in which the abundance
of a cohort declines exponentially (without the bag
limit) and catch per fisher-trip is distributed ac-
cording to the negative binomial. This example
serves primarily as a pedagogical tool to help ex-
plain the algorithm, but may prove useful as a
first-order model of some real scenarios.

Consider the familiar linear differential model
of Beverton and Holt (1957):

If the fishing mortality rate (F) and natural mor-
tality rate (M) coefficients were both constant, the
stock abundance at the end of the time interval
[0, T ] would be TV M/ ' m '• With a bag limit, how-
ever. the fishing mortality rate coefficient is nec-
essarily a function of ty, even if the fishing mor-
tality rate without the bag limit is not. If equation
(5) is a reasonable model for the catch with the
bag limit, then the stock abundance with the bag
limit follows from equation (9), in which G(} =
-A/. As discussed earlier, the exact solution to
equation (9) is unknown, but good approximations
can be obtained if the interval [0, 7'] is divided

into many (T number of) small time steps (length
h = 77r), and equation (11) is used to approximate
the solution for each step:

(16)

where

i 2 x
\x±b

and w€k is given by equation (14) with Gk = -M.
All that is left to do now is to close the problem

by specifying P[x \ Nk ]. Suppose that the negative
binomial is a good model for the c/f distribution:

- 1)!

From the moment equations, we know that the
parameter mk is equivalent to the mean catch per
trip without the bag limit (KXA.), and if the variance
in catch among trips follows equation (7),

As mentioned earlier, the accuracy of the al-
gorithm increases with the number of time steps
r. The question is how large should r be in order
to minimize the error? Choosing too small a value
for r will likely lead to a large discretization error,
but choosing too large a value for r can lead to a
large roundoff error or excessive use of computer
time. The behavior of the error for the case at
hand is examined in Appendix 1. The analysis
indicates that the algorithm converges at a linear
rate (doubling T halves the error) and suggests an
optimum r of about 2,048 intervals/year for the
32-bit VAX system at the University of Miami.
On large mainframe computers this optimum is
practical; the execution time is minimal (seconds)
even for long simulations with multiple cohorts.
On the other hand, the same simulations run on
an Apple He microcomputer took several hours
each. Fortunately, for T greater than 16 steps/year,
the error after 1 year of simulation generally will
not exceed 5% of the true value of the catch with
the bag limit; thus, weekly or biweekly time steps
should be sufficient for short (1-2-year) projec-
tions.
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BAG LIMITS AND FISHERIES 843

Discussion
The basic principle behind the bag limit algo-

rithm is simple: given a starting stock abundance,
the c/f distribution for a brief time step is simu-
lated by use of catch statistics obtained from a
stock abundance model without the bag limit. The
simulated c/f distribution is then distorted in some
manner to give the catch with the bag limit, which
in turn is used to compute the stock abundance at
the end of the time step (start of the next step).
We have attempted to present the mathematical
elements of the algorithm in as general a form as
possible, that is, without specifying the models for
slock abundance and the c/f distribution (except
in the example). However, we have limited our
discussion of the bag limit's effect on the c/f dis-
tribution to censoring (equations 4, 5, and 15).
The validity of the censoring approach depends
on the soundness of assumptions (5), (6), and (7)
(we have relaxed assumption 4 by updating stock
abundance after very small increments in time).
In this section, we examine these assumptions in
more detail, and where appropriate, suggest alter-
native models. As will become apparent, assump-
tions (4)-(7) are not mutually exclusive. More-
over, the effect of violating one assumption may
mitigate the effect of violating another.

Assumption (5): Fisher Behavior
It is convenient to break assumption (5) into

four parts: (a) fishers on a party-trip do not pool
their catches, (b) fishers obey the bag limit, (c) the
number offish that are released or discarded does
not change with the bag limit, and (d) the effort
directed towards the target species does not change.

(a) Pooling. —One way fishers in a party can
soften the effect of a bag limit is by misrepresent-
ing their excess catch as part of the catch of fishers
who have not met their limit. The operational
limit becomes the party limit, i.e., the number of
fishers in the party (y) multiplied by the number
offish allowed by the daily bag limit (b). Accord-
ingly, assumption (5) should be modified to read
"When regulated by a bag limit, individual parties
cease fishing as soon as the party l imit is
reached. . . ." The catch with the bag limit for all
parties with exactly y fishers, bC^ would then be
obtained by censoring the distribution of catch per
party with y fishers (c/yf) at the party limit:

*C, = sl 2
\x*by

xP[x \y] + by 2 P[* \y
x.-by

\\\
/

Sv is the number of parties with exactly y fishers,
and P[x | y] is the probability that a party with
y fishers would catch x fish without the bag limit.
The total catch with the bag limit, hC. is obtained
by summing equation (17) over all possible values
ofy.

Inasmuch as equation (4) is only a special case
of equation (17), where y = I , we will adopt the
more general notation for all subsequent devel-
opments. Equation (17) is incorporated into the
example of the preceding section in Appendix 2.

(b) Disobeying the bag limit.—The prevalence
of bag violations is obviously a function of the
likelihood of detection, the consequences of being
detected, and the size of the bag limit. If all fishers
(parties) with disobedient inclinations are com-
pletely undeterred by the bag limit, then the illegal
catch made by parties with y participants (;Cr) is

'C, = P [disobey | y, b] (»'Cy - hCv); (18)

P [disobey | y, b] is the probability that a party
with y members will disobey a bag limit of size b,
hCv is the legal catch with the bag limit (from equa-
tion 17), and WCV is the catch without the bag limit.
When some fishers do not disregard the bag limit
entirely, but instead limit their risk of detection
by keeping only a few more fish than the bag limit
allows (perhaps late in the day), we must consider
the probability P[£ \ x, y, b] that a disobedient
party o fy fishers who, unregulated, would have
caught .v fish, will exceed the party limit by a given
number £:

'C, = 5VP [disobey | y, b]

•2
x>hy £-0

(19)

(17)

Equation (19) reduces to equation (18) when P[£
= x - by | x. y, b] = 1.

(c) Release mortality and discarding. — High
postmortem discards or frequent releases coupled
with high mortality of released fish will substan-
tially reduce the effectiveness of a bag limit. Ban-
nerot (1987) approached this problem by assum-
ing that fishers capture as many fish as they would
have without the bag limit, but keep only their
legal limit and release the rest, some fraction of
which will die:

Rv = P [released fish dies | y](MCv - ''Cv - 'Cv).
(20)

He found, for example, that the size of the bag
limit required to achieve a 25% reduction in the
private recreational catch of Atlantic king mack-
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844 PORCH AND FOX

erel stocks declined from four fish per angler-day
at 0% release mortality to one fish per angler-day
at 75% release mortality.

Bannerol's (1987) hypothesis is consistent with
the commonly held belief that retaining and con-
suming fish are relatively unimportant motives for
recreational fishers (Fedler 1984). However, nu-
merous published studies on human dimensions
of fisheries have indicated that some groups of
fishers place much more importance on retaining
the catch than others (Fedler and Ditton 1986;
Matlock et al. 1988; Peyton and Gigliotti 1989).
These fishers may stop fishing after they reach
their limit (reducing release mortality), or, if the
possibility of catching a larger fish is good, they
may continue fishing and discard the small, dead
fish as larger fish are caught (increasing discard
mortality). There is also the possibility that some
fishers, in anticipation of catching larger fish, will
release small, live fish before they reach their lim-
it, which reduces the chance that they will meet
the limit. The importance of these phenomena
will vary from fishery to fishery, and we have found
it difficult to establish any useful generalization
from the published literature on human dimen-
sions. Case-specific hypotheses could be examined
by incorporating an age (length) structure into the
models in the bag limit algorithm. We suspect
that, in most cases. Bannerol's (1987) model will
provide a useful upper bound for the true number
of fish lhat actually die as a result of fishing.

(d) Effort. —The lolal amounl of effort pul forth
by parties wilh y participant,/^ can be expressed
as ihe produci of ihe number of irips (Sv) and ihe
average number of fisher-hours per trip (yy). As-
sumption (5) stipulates lhal fishers slop fishing as
soon as Ihe bag limil is reached, implying lhal ihe
only effecl of a bag limil is lo reduce 7. Il is pos-
sible, however, lhal ihe bag limil will also influ-
ence ihe number of irips. If ihe change in ihe num-
ber of irips is independenl of ihe fishers' abilily
lo caich fish, ihen ihe shape of ihe c/yf dislribulion
will be preserved. If ihis is ihe case, ihe algorithm
in Appendix 2 would need no further modifica-
tion, though we emphasize lhal ihe lerm wFy (Ihe
potential fishing mortality rale wilhoul ihe bag
limil) implicitly includes Sy and musl be updaled
accordingly. As Bannerol (1987) poinled oul,
however, ihe caich dislribulion will probably shift
wilh changes in ihe loial number of Irips, because
difFerenl classes of fishers will respond lo ihe bag
limil differenlly. Skilled fishers may divert iheir
effort 10wards olher fisheries (increasing ihe bag
limil's effecliveness) or allempl lo circumvenl Ihe

limil by including nonfishers in iheir party (de-
creasing Ihe bag limil's effectiveness). Fishers for
whom relaining ihe caich is very importanl (e.g.,
sustenance) may make more fishing trips. Again,
it is difficult lo establish a meaningful generaliza-
tion, bul a practical lower limit for the caich wilh
ihe bag limil would be obtained by assuming lhal
all of ihe fishers affected by the bag limil simply
drop oul of ihe fishery so lhal ihe c/yf dislribulion
is iruncaled ralher lhan censored:

(21)
S />>'

hSy is ihe number of irips wilh ihe bag limit,
hSy= »Sy 2 P[x\y],

.t •- by

and wSy is the number of trips withoul ihe bag
limit. The upper limit is, trivially, the catch with-
oul ihe bag limit. Most likely, the catch with the
bag limil will fall belween ihe iwo exlremes (such
as equalion 17), bul Ihere is an infinile range of
possibilities. As Ditlon and Fedler (1989) com-
menied, "Research is needed . . . lhal examines
angler responses lo regulaiory measures lhal are
conlexl specific."

Assumption 6: Competing User Groups
Reducing a given group's abilily lo caich fish

will have ihe nel effecl of making a larger fraclion
of Ihe slock available lo compeling groups. Bag
limil regulalions, however, have Ihe addilional ef-
fecl of becoming increasingly reslriclive as calch-
abiliiy or slock abundance increases. Hence, ihe
abilily of Ihe bag-limil-regulaled user-groups lo
capitalize during limes of improved fishing may
be severely limited compared lo lhal of Ihe com-
peling user-groups. This effecl would be especially
crilical when ihe effort of bolh groups flucluales
wilh ihe local calchabilily or abundance of the
stock. There is also Ihe possibilily lhal Ihe com-
peling groups will lake advantage of the decrease
in effort from the bag-limil-regulaled seclor and
fish ihe slock harder in anticipation of greater
catches. Accordingly, one musl consider Ihe dy-
namics of Ihe compeling user-groups lo avoid sys-
lemaiically overeslimaling ihe caich of ihe bag-
limil-regulaled group.

Assumption 7: Multispecies Fisheries
Forecasling Ihe effecl of a bag limil on ihe ex-

ploiialion of mullispecies assemblages is an es-
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BAG LIMITS AND FISHERIES 845

pecially difficult task. It requires not only knowl-
edge of the interdependence among the exploited
species, but also an understanding of fisher be-
havior. If, for example, a bag limit were placed
on only one of two exploited species, fishers who
normally targeted the regulated species might in-
stead target the second species. The problem is
exacerbated when the different species are rou-
tinely caught in the same areas with the same gear.

A few special cases may be easily resolved. Con-
sider, for example, an assemblage of species that
share the same habitat and are equally vulnerable
to the same types of gear, e.g., pan fish in a lake or
grunts on a patch reef. If this assemblage were
managed as a single species by a lump bag limit,
then, barring discriminatory behavior of the fish-
ers, all of the species would experience the same
proportional reduction in catch or fishing mortal-
ity rate. The censoring approach, or some other
transformation, could then be applied to the en-
semble catch distribution.

The scenario changes drastically if the different
species interact or if fishers tend to discard one
species in favor of the others. Deriso and Parma
(1987) presented a compelling probabilistic model
of hook-and-line angling that includes interfer-
ence competition among three species, and there
is no reason it could not be adapted to include
bag limits. Otherwise, there is a dearth of infor-
mation on the subject.

We note that the above discussion applies equal-
ly well when the phrase "multiple-species assem-
blages" is amended to include multiple cohorts
within a species. With multiple cohorts, we be-
come concerned with changing size-selectivity
patterns of the fishers and cohort-to-cohort inter-
actions.

Acknowledgments
We are grateful to John Hoenig, Bernard How-

ard, Cynthia Jones, Victor Restrepo, Chi-Lu Sun,
and two anonymous reviewers who read the
manuscript critically and gave many helpful com-
ments. We also thank Nelson Ehrhardt, Joseph
Powers, Edward Rutherford, James Tilmant, and
James Zweifel for their pragmatic advice during
the course of this research. Joseph Powers and
James Zweifel (Southeast Fisheries Center, Mi-
ami) secured the king mackerel and spotted sea-
trout data. This work was supported by grants
from the Sport Fishery Research Foundation, the
International Light Tackle Tournament Associa-
tion, and the National Oceanic and Atmospheric
Administration via the Cooperative Institute for

Marine and Atmospheric Studies (Cooperative
Agreement NA85-WCH-06134).

References
Argue, A. W., R. Hilborn, R. M. Peterman, M. J. Staley,

andC J.Walters. 1983. Strait of Georgia chinook
and coho fishery. Canadian Bulletin of Fisheries and
Aquatic Sciences 21.

Bannerot, S. P. 1987. Effect of potential bag limits on
recreational catch of king and Spanish mackerel in
the Gulf of Mexico and South Atlantic regions of
the southeastern United States. South Atlantic Fish-
ery Management Council, Charleston, South Car-
olina.

Bannerot, S. P., and C. B. Austin. 1983. Using fre-
quency distributions of catch per unit effort to mea-
sure fish-stock abundance. Transactions of the
American Fisheries Society 112:608-617.

Beverton, R. J. H., and S. J. Holt. 1957. On the dy-
namics of exploited fish populations. Fishery In-
vestigations, Series 2. Marine Fisheries. Great Brit-
ain Ministry of Agriculture, Fisheries and Food 19.

Deriso. R. B., and A. M. Parma. 1987. On the odds
of catching fish with angling gear. Transactions of
the American Fisheries Society 116:244-256.

Dilton. R. B., and A. J. Fedler. 1989. Importance of
fish consumption to sport fishermen: a reply to Mat-
lock et al. (1988). Fisheries (Bethesda) 14(4):4, 6.

Eldridge, P., and J. E. Powers. 1983. Effect of potential
bag limits on recreational catch of king mackerel.
National Marine Fisheries Service, Southeast Fish-
eries Center, Second Stock Assessment Workshop,
Report SAW/84/GCP/3, Miami, Florida.

Fedler, A. J. 1984. Elements of motivation and satis-
faction in the marine recreational fishing experi-
ence. Pages 75-83 in R. H. Stroud, editor. Proceed-
ings of the ninth annual marine recreational fishery
symposium. National Coalition for Marine Con-
servation, Savannah, Georgia.

Fedler, A. J., and R. B. Ditton. 1986. A framework
for understanding the consumptive orientation of
recreational fishermen. Environmental Manage-
ment 10:221-227.

Feller, W. 1968. An introduction to probability theory
and its applications, volume 1. Wiley, New York.

Fox, W. W., Jr. 1974. An overview of production
modelling. U.S. National Marine Fisheries Service,
Southwest Fisheries Center, Administrative Report
U-74-10, La Jolla. California.

Greenwood, M., and G. U. Yule. 1920. An inquiry
into the nature of frequency distributions represen-
tative of multiple happenings. Journal of the Royal
Statistical Society 83:255-279.

Howard, B. E. 1974. Phase space analysis in numerical
integration of ordinary differential equations. Pages
107-127 in D. G. Bettis, editor. Proceedings of the
conference on the numerical solution of ordinary
differential equations. Springer-Verlag, New York.

MacCall, A. D. 1976. Density dependence of catch-
ability coefficient in the California Pacific sardine,
Sardinops sagax caerulea, purse seine fishery. Cal-

D
ow

nl
oa

de
d 

by
 [

N
O

A
A

 N
M

FS
 L

a 
Jo

lla
] 

at
 0

8:
02

 1
4 

Ja
nu

ar
y 

20
16

 



846 PORCH AND FOX

ifornia Cooperative Oceanic Fisheries Investiga- Malagorda Bay experience. Fisheries (Bethesda)
lions Report 18:136-148. 14(4):5-8.

Mangel. M., and J. H. Beder. 1985. Search and stock Pielou, E. C. 1977. Mathematical ecology. Wiley, New
depletion: theory and applications. Canadian Jour- York.
nal of Fisheries and Aquatic Sciences 42:150-163. Porch, C. E. 1988. The dynamic trends of fisheries

Matlock. G. C. G. E. Saul, and C. E. Bryan. 1988. regulated by small daily bag limits. Master's thesis.
Importance of fish consumption to sport fishers. University of Miami, Coral Gables, Florida.
Fisheries (Bethesda) 13(l):25-26. Small, I., and D. Y. Downham. 1985. The interpre-

Patil, G. P., and S. W. Joshi. 1968. A dictionary and tation of anglers' records (trout and seatrout, Saltno
bibliography of discrete distributions. Hafner, New trutta L., and Salmo salar L.). Aquaculture and
York. Fisheries Management 16:151-169.

Pella, J. J., and C. T. Psaropulos. 1975. Measures of Taylor, L. R. 1961. Aggregation, variance, and the
tuna abundance from purse-seine operations in the mean. Nature (London) 189:732-735.
eastern Pacific Ocean adjusted for fleet-wide evo- Taylor, L. R., I. P. Woiwod, and J. N. Perry. 1978.
lution of increased fishing power, 1960-1971. Inter- The density-dependence of spatial behaviour and
American Tropical Tuna Commission Bulletin 16: the rarity of random ness. Journal of Animal Ecol-
283-354. ogy 47:383-406.

Peterman, R. M., and G. J. Steer. 1981. Relation be- Thompson, W. A. 1976. Fisherman's luck. Biometrics
tween sport-fishing catchability coefficients and 32:265-271.
salmon abundance. Transactions of the American Received June 1, 1989
Fisheries Society 110:585-593. Accepted February \4, 1990

Pcyton, R. B., and L. M. Gigliotti. 1989. The utility
of sociological research: a re-examination of the East

Appendix 1: Determination of Optimum Step Size and Convergence Rate
Here we present the results of an a posteriori error analysis of the bag limit

algorithm. The crux of such an analysis is that the maximum accuracy is realized
when the discretization error (associated with the numerical method) and roundoff
error (associated with computer word size) are roughly equal (Howard 1974).
Typically, the cumulative discretization error over a fixed period is assumed to
have the form «r~"; 6 is the "order" of the method, r is the number of subintervals
in each period, and a depends on the equations involved in the calculations.
Roundoff error is usually treated as a random variable with expectation ftr\ ft
depends on the equations and computer word size. Plots of log,. | error \ versus
log^r should then show a straight line with slope —0 when discretization error is
dominant (small r) and a straight line with slope one when roundoff error is
dominant (large r). The two lines are connected by a curvilinear region in which
the roundoff and discretization errors are roughly equal.

Following Howard (1974), we obtained the standard of reference to calculate
the error for our analysis as follows.

(1) The simulation was repeated for a sequence of values of r (1, 2, 4, 8, 16,. . .,
1,048,576), and the computed value of hC was recorded for each r.

(2) First-order (0 = 1) Richardson extrapolations were made for each successive
pair of computed values of hC.

(3) When q successive extrapolations agreed, the q + 1 computed values lay along
a straight line on the log-log graph, and the average of the extrapolations was
taken as the standard of reference.

Table A1.1 gives the results from the analysis when the annual fishing mortality
rate = 1.0, annual natural mortality rate = 0.5, initial stock abundance = 25,000,
number of trips = 145,585, and the variance in catch among trips was equal to
the mean catch among trips multiplied by 20. The standard of reference used to
compute the error (7,572.471) was the average of the extrapolations for which
discretization error was dominant—the five values flagged by single asterisks. The
average of the roundoff extrapolations, flagged by double asterisks, was 7,598.104,
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BAG LIMITS AND FISHERIES 847

TABLE A 1.1.—Results from an a posteriori error analysis of the bag limit algorithm
(Appendix 1) in which fishers are treated individually (y = 1); the annual fishing mortality
rate without the bag limit (WF) = 1.0; natural mortality rate (A/) = 0.5; initial stock abundance
(N\) = 25,000; number of trips per year (5) = 145,585; bag limit (b) = 5; and the variance
(a2) in catch among trips = the mean catch per trip (*A) multiplied by 20. Single asterisks
(*) indicate estimates of the true catch, with the bag limit in effect, based on extrapolations
to zero error when discretization error is dominant (mean = 7,572.471). Double asterisks
(**) are extrapolations obtained when roundoff" error is dominant (mean = 7,598.104).

Catch with bag limit
Intervals per year

1
2
4
8

16
32
64

128
256
512

1.024
2,048
4,096
8,192

16,384
32.768
65.536

131,072
262,144
524,288

1,048,576

Calculated
6,143.912
6,733.065
7.116.579
7,334.792
7.451.146
7,511.200
7,541.732
7,557.072
7,564.853
7,568.674
7,570.613
7,571.895
7.572.219
7,573.012
7,572.822
7.572.860
7,575.149
7.563.360
7,588.251
7,588.853
7.498.348

Extrapolated

7,572.264*
7,572.412*
7,572.634*
7.572.495*
7,572.552*

7,586.938**
7,538.469**
7,587.650**
7,679.358**

Approximate error
-1.428.559

-839.406
-455.892
-237.679
-121.325
-61.271
-30.739
-15.399
-7.618
-3.797
-1.858
-0.576
-0.252

0.541
0.351
0.389
2.678

-9.111
15.780
16.382

-74.123

which lends credence to the use of 7,572.471 as the standard. The plot of log,. | error \
versus IO&.T is shown in Figure A 1.1. The error first decreases with the number
of intervals per year, is minimized when r = 4,096 (\oger = 8.32), and then
increases with increasing T in the noisy fashion one expects when roundoff errors
are important. The two respective trends are linear on the log-log scale and have
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FIGURE A 1.1. —Example of a plot of log, \error \ versus IO&.T; error = (standard - com-
puted catch) and r is the number of intervals (steps) into which each year is divided. The
specific example shown was generated from the results in Table A.I.
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848 PORCH AND FOX

slopes very close to one, demonstrating that the algorithm is stable and converges
to the optimum at a linear rate. The small deviations from linearity associated
with the very small r (<32), in which sources of error other than discretization
or roundoff may be important, are typical of most numerical methods (B. E.
Howard, University of Miami, personal communication).

The above analysis was repeated for combinations of different values for fishing
mortality (0.1 and 1.0), natural mortality (0.0 and 0.5), stock abundance (25,000;
500,000; and 10,000,000), and variance: mean relationships (a2 = 1. IX, a2 = 20X).
The optima typically were close to r = 2,048 except at the extremes, where the
bag limit either had no effect (very small mean catch per day) or an extremely
strong effect (very large mean catch, i.e., all trips meet the limit). In those cases,
the computed values were essentially the same for all r less than 4,096. A more
interesting result was that the percent difference between the computed catch and
the extrapolated (true) catch was always less than 5% for r > 16; hence, weekly
or biweekly time steps are sufficient, which makes the algorithm useful to those
without access to high-speed mainframe computers.

Appendix 2: The Step-Wise Procedure
Here we give the essential details of the bag limit algorithm when the negative

binomial is used to model the c/yf distribution. Equation (17) is used to model
the effect of a bag limit on the c/yf distribution, equation (16) is used to model
the change in stock abundance, and the variance in catch among party-trips is a
power function of the mean catch per party-trip.

Step 1: compute the total catch without the bag limit of all parties with exactly
y members:

wfk = 2 H'̂ >*»

and h is the length of the time step in years.
Step 2 : generate the theoretical c/yf distribution. Here we use the negative

binomial distribution in which the variance follows Taylor's (1961) power law:

myk

and

= (** + * - » * / •"* \Y, + fflt
*!<** - 1)! U* + K*l V K*

Step 3 : censor the generated c/yf distributions at their respective party limits
(b times y) to get the catch with the bag limit for parties with y members:

* sJ 2 xP[x |y, Nk] + by 2 P\x \y, Nk]\.
\x-?.by x>by /
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BAG LIMITS AND FISHERIES 849

Step 4: compute the fishing mortality rate with the bag limit:
bC*

Step 5: compute the stock's abundance at the start of the next interval:

Step 6: set k = k + 1 and return to step 1.
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